Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(4): e0227423, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470181

RESUMO

Vibrio species are prevalent in ocean ecosystems, particularly Vibrio coralliilyticus, and pose a threat to corals and other marine organisms under global warming conditions. While microbiota manipulation is considered for coral disease management, understanding the role of commensal bacteria in stress resilience remains limited. Here, a single bacterial species (Ruegeria profundi) rather than a consortium of native was used to combat pathogenic V. coralliilyticus and protect corals from bleaching. R. profundi showed therapeutic activity in vivo, preventing a significant reduction in bacterial diversity in bleached corals. Notably, the structure of the bacterial community differed significantly among all the groups. In addition, compared with the bleached corals caused by V. coralliilyticus, the network analysis revealed that complex interactions and positive correlations in the bacterial community of the R. profundi protected non-bleached corals, indicating R. profundi's role in fostering synergistic associations. Many genera of bacteria significantly increased in abundance during V. coralliilyticus infection, including Vibrio, Alteromonas, Amphritea, and Nautella, contributing to the pathogenicity of the bacterial community. However, R. profundi effectively countered the proliferation of these genera, promoting potential probiotic Endozoicomonas and other taxa, while reducing the abundance of betaine lipids and the type VI section system of the bacterial community. These changes ultimately influenced the interactive relationships among symbionts and demonstrated that probiotic R. profundi intervention can modulate coral-associated bacterial community, alleviate pathogenic-induced dysbiosis, and preserve coral health. These findings elucidated the relationship between the behavior of the coral-associated bacterial community and the occurrence of pathological coral bleaching.IMPORTANCEChanges in the global climate and marine environment can influence coral host and pathogen repartition which refers to an increased likelihood of pathogen infection in hosts. The risk of Vibrio coralliilyticus-induced coral disease is significantly heightened, primarily due to its thermos-dependent expression of virulent and populations. This study investigates how coral-associated bacterial communities respond to bleaching induced by V. coralliilyticus. Our findings demonstrate that Ruegeria profundi exhibits clear evidence of defense against pathogenic bacterial infection, contributing to the maintenance of host health and symbiont homeostasis. This observation suggests that bacterial pathogens could cause dysbiosis in coral holobionts. Probiotic bacteria display an essential capability in restructuring and manipulating coral-associated bacterial communities. This restructuring effectively reduces bacterial community virulence and enhances the pathogenic resistance of holobionts. The study provides valuable insights into the correlation between the health status of corals and how coral-associated bacterial communities may respond to both pathogens and probiotics.


Assuntos
Antozoários , Rhodobacteraceae , Vibrio , Animais , Branqueamento de Corais , Ecossistema , Disbiose , Antozoários/microbiologia , Recifes de Corais
2.
PLoS One ; 19(2): e0296902, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38416713

RESUMO

Widespread coral bleaching has generally been linked to high water temperatures at larger geographic scales. However, the bleaching response can be highly variable among individual of the same species, between different species, and across localities; what causes this variability remains unresolved. Here, we tracked bleached and non-bleached colonies of Acropora muricata to see if they recovered or died following a stress event inside the semi-enclosed lagoon of Bouraké (New Caledonia), where corals are long-term acclimatized to extreme conditions of temperature, pH and dissolved oxygen, and at a nearby control reef where conditions are more benign. We describe Symbiodiniaceae community changes based on next-generation sequencing of the ITS2 marker, metabolic responses, and energetic reserve measures (12 physiological traits evaluated) during the La Niña warm and rainy summer in 2021. Widespread coral bleaching (score 1 and 2 on the coral colour health chart) was observed only in Bouraké, likely due to the combination of the high temperatures (up to 32°C) and heavy rain. All colonies (i.e., Bouraké and reference site) associated predominantly with Symbiodinaceae from the genera Cladocopium. Unbleached colonies in Bouraké had a specific ITS2-type profile (proxies for Symbiodiniaceae genotypes), while the bleached colonies in Bouraké had the same ITS2-type profile of the reef control colonies during the stress event. After four months, the few bleached colonies that survived in Bouraké (B2) acquired the same ITS2 type profiles of the unbleached colonies in Bouraké. In terms of physiological performances, all bleached corals showed metabolic depression (e.g., Pgross and Rdark). In contrast, unbleached colonies in Bouraké maintained higher metabolic rates and energetic reserves compared to control corals. Our study suggests that Acropora muricata enhanced their resistance to bleaching thanks to specific Symbiodiniaceae associations, while energetic reserves may increase their resilience after stress.


Assuntos
Antozoários , Dinoflagelados , Animais , Branqueamento de Corais , Antozoários/fisiologia , Temperatura , Dinoflagelados/genética , Estações do Ano , Recifes de Corais , Simbiose
3.
Glob Chang Biol ; 30(1): e17088, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273492

RESUMO

Microbiomes are essential features of holobionts, providing their hosts with key metabolic and functional traits like resistance to environmental disturbances and diseases. In scleractinian corals, questions remain about the microbiome's role in resistance and resilience to factors contributing to the ongoing global coral decline and whether microbes serve as a form of holobiont ecological memory. To test if and how coral microbiomes affect host health outcomes during repeated disturbances, we conducted a large-scale (32 exclosures, 200 colonies, and 3 coral species sampled) and long-term (28 months, 2018-2020) manipulative experiment on the forereef of Mo'orea, French Polynesia. In 2019 and 2020, this reef experienced the two most severe marine heatwaves on record for the site. Our experiment and these events afforded us the opportunity to test microbiome dynamics and roles in the context of coral bleaching and mortality resulting from these successive and severe heatwaves. We report unique microbiome responses to repeated heatwaves in Acropora retusa, Porites lobata, and Pocillopora spp., which included: microbiome acclimatization in A. retusa, and both microbiome resilience to the first marine heatwave and microbiome resistance to the second marine heatwave in Pocillopora spp. Moreover, observed microbiome dynamics significantly correlated with coral species-specific phenotypes. For example, bleaching and mortality in A. retusa both significantly increased with greater microbiome beta dispersion and greater Shannon Diversity, while P. lobata colonies had different microbiomes across mortality prevalence. Compositional microbiome changes, such as changes to proportions of differentially abundant putatively beneficial to putatively detrimental taxa to coral health outcomes during repeated heat stress, also correlated with host mortality, with higher proportions of detrimental taxa yielding higher mortality in A. retusa. This study reveals evidence for coral species-specific microbial responses to repeated heatwaves and, importantly, suggests that host-dependent microbiome dynamics may provide a form of holobiont ecological memory to repeated heat stress.


Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Branqueamento de Corais , Antozoários/fisiologia , Resposta ao Choque Térmico
4.
Science ; 382(6671): 628-629, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943912

RESUMO

Reefs already stressed by bleaching are being smothered by crust-forming red algae.


Assuntos
Antozoários , Recifes de Corais , Aquecimento Global , Rodófitas , Animais , Branqueamento de Corais , Rodófitas/crescimento & desenvolvimento
5.
Mar Environ Res ; 192: 106215, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890231

RESUMO

Coral reefs in turbid waters have been hypothesized to be a refuge from climate change. These naturally occurring communities were brought into the spotlight because some of their species exhibited record levels of resistance to marine heatwaves (MHWs) by disturbance-tolerant corals. However, long-term monitoring data on the drivers of coral bleaching in these extreme reef habitats are scarce. Here, we describe the population structure and bleaching rates of a widespread and resilient coral (Siderastrea stellata). We examine the links between environmental factors, namely, rainfall, wind speed, turbidity, solar irradiance, sea surface temperature, MHWs, and coral bleaching status under the worst recorded drought cycle in the Tropical South Atlantic (2013-2015). We examined 2880 colonies, most of which (∼93%) fit in the size group of 2-10 cm, with a small number (∼1%) of larger and older colonies (>20 cm). The results indicated the absence of MHWs and normal sea surface temperature variations (between 26.6 °C and 29.3 °C), however, we detected an extreme rainfall deficit (30-40% less annual volume precipitation). In general, a high proportion (44-84%) of bleached colonies was found throughout the months when turbidity decreased. Siderastrea is the only reef-building coral that comprises this seascape with encrusting and low-relief colonies. During drought periods, cloudiness is reduced, turbidity and wind speed are reduced, and solar irradiance increase, driving coral bleaching in turbid reefs. However, episodic rainfall and higher wind speeds increase turbidity and decrease coral bleaching. Our hypothesis is that turbidity decreases during drought periods which increases bleaching risk to corals even without thermal stress. Our results suggest that turbidity may have related to wind and rainfall to provoke the coral bleaching phenomenon.


Assuntos
Antozoários , Branqueamento de Corais , Animais , Vento , Recifes de Corais , Ecossistema
6.
Nat Commun ; 14(1): 6528, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845210

RESUMO

As global temperatures continue to rise, shallow coral reef bleaching has become more intense and widespread. Mesophotic coral ecosystems reside in deeper (30-150 m), cooler water and were thought to offer a refuge to shallow-water reefs. Studies now show that mesophotic coral ecosystems instead have limited connectivity with shallow corals but host diverse endemic communities. Given their extensive distribution and high biodiversity, understanding their susceptibility to warming oceans is imperative. In this multidisciplinary study of an atoll in the Chagos Archipelago in the central Indian Ocean, we show evidence of coral bleaching at 90 m, despite the absence of shallow-water bleaching. We also show that the bleaching was associated with sustained thermocline deepening driven by the Indian Ocean Dipole, which might be further enhanced by internal waves whose influence varied at a sub-atoll scale. Our results demonstrate the potential vulnerability of mesophotic coral ecosystems to thermal stress and highlight the need for oceanographic knowledge to predict bleaching susceptibility and heterogeneity.


Assuntos
Antozoários , Ecossistema , Animais , Branqueamento de Corais , Recifes de Corais , Água
7.
mSystems ; 8(6): e0050523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37882797

RESUMO

IMPORTANCE: Coral reefs worldwide are facing rapid decline due to coral bleaching. However, knowledge of the physiological characteristics and molecular mechanisms of coral symbionts respond to stress is scarce. Here, metagenomic and metaproteomic approaches were utilized to shed light on the changes in the composition and functions of coral symbiotic bacteria during coral bleaching. The results demonstrated that coral bleaching significantly affected the composition of symbionts, with bacterial communities dominating in bleached corals. Through differential analyses of gene and protein expression, it becomes evident that symbionts experience functional disturbances in response to heat stress. These disturbances result in abnormal energy metabolism, which could potentially compromise the health and resilience of the symbionts. Furthermore, our findings highlighted the highly diverse microbial communities of coral symbionts, with beneficial bacteria providing critical services to corals in stress responses and pathogenic bacteria driving coral bleaching. This study provides comprehensive insights into the complex response mechanisms of coral symbionts under heat stress from the micro-ecological perspective and offers fundamental data for future monitoring of coral health.


Assuntos
Antozoários , Branqueamento de Corais , Animais , Recifes de Corais , Antozoários/metabolismo , Bactérias/genética , Metabolismo Energético
8.
PeerJ ; 11: e16100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810774

RESUMO

Marine heatwaves and regional coral bleaching events have become more frequent and severe across the world's oceans over the last several decades due to global climate change. Observational studies have documented spatiotemporal variation in the responses of reef-building corals to thermal stress within and among taxa across geographic scales. Although many tools exist for predicting, detecting, and quantifying coral bleaching, it remains difficult to compare bleaching severity (e.g., percent cover of bleached surface areas) among studies and across species or regions. For this review, we compiled over 2,100 in situ coral bleaching observations representing 87 reef-building coral genera and 250 species of common morphological groups from a total of 74 peer-reviewed scientific articles, encompassing three broad geographic regions (Atlantic, Indian, and Pacific Oceans). While bleaching severity was found to vary by region, genus, and morphology, we found that both genera and morphologies responded differently to thermal stress across regions. These patterns were complicated by (i) inconsistent methods and response metrics across studies; (ii) differing ecological scales of observations (i.e., individual colony-level vs. population or community-level); and (iii) temporal variability in surveys with respect to the onset of thermal stress and the chronology of bleaching episodes. To improve cross-study comparisons, we recommend that future surveys prioritize measuring bleaching in the same individual coral colonies over time and incorporate the severity and timing of warming into their analyses. By reevaluating and standardizing the ways in which coral bleaching is quantified, researchers will be able to track responses to marine heatwaves with increased rigor, precision, and accuracy.


Assuntos
Antozoários , Recifes de Corais , Animais , Branqueamento de Corais , Temperatura , Antozoários/fisiologia , Padrões de Referência
9.
Mar Environ Res ; 191: 106152, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37604086

RESUMO

Most studies on coral bleaching alerts use common Degree Heating Week (DHW) thresholds; however, these may underestimate historical patterns of heat stress for coral reef ecosystems. Taking an optimized DHW threshold for coral bleaching alerts for Coral Reef Watch (CRW) and Coral Reef Temperature Anomaly Database (CoRTAD) products, we analyzed the precise spatial and temporal pattern of heat stress on China's coral reefs from 2010 to 2021 in the South China Sea (SCS) and the Beibu Gulf (BG). We compared acute heat stress using common and optimized thresholds. Results indicated that the ocean warming rate in 2010-2021 was approximately 0.43 ± 0.22 °C/10a, showing a significant increase in the northern SCS and the BG. More severe bleaching events were predicted by the optimized thresholds and the high-frequency areas were mainly in the northern SCS. The number and intensity of years with severe heat stress anomalies was in the order 2020 > 2014 > 2010 > 2015. Heat stress duration was the longest in the Xisha Islands among offshore archipelagos, and longest in 2020-2021 in Weizhou Island in BG in the relative high-latitude inshore reefs. These abnormal events were mainly caused by El Niño, but La Niña was also involved in 2020.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Branqueamento de Corais , Resposta ao Choque Térmico , China
10.
Microbiome ; 11(1): 185, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37596630

RESUMO

BACKGROUND: Reef-building corals are acutely threatened by ocean warming, calling for active interventions to reduce coral bleaching and mortality. Corals associate with a wide diversity of bacteria which can influence coral health, but knowledge of specific functions that may be beneficial for corals under thermal stress is scant. Under the oxidative stress theory of coral bleaching, bacteria that scavenge reactive oxygen (ROS) or nitrogen species (RNS) are expected to enhance coral thermal resilience. Further, bacterial carbon export might substitute the carbon supply from algal photosymbionts, enhance thermal resilience and facilitate bleaching recovery. To identify probiotic bacterial candidates, we sequenced the genomes of 82 pure-cultured bacteria that were isolated from the emerging coral model Galaxea fascicularis. RESULTS: Genomic analyses showed bacterial isolates were affiliated with 37 genera. Isolates such as Ruegeria, Muricauda and Roseovarius were found to encode genes for the synthesis of the antioxidants mannitol, glutathione, dimethylsulfide, dimethylsulfoniopropionate, zeaxanthin and/or ß-carotene. Genes involved in RNS-scavenging were found in many G. fascicularis-associated bacteria, which represents a novel finding for several genera (including Pseudophaeobacter). Transporters that are suggested to export carbon (semiSWEET) were detected in seven isolates, including Pseudovibrio and Roseibium. Further, a range of bacterial strains, including strains of Roseibium and Roseovarius, revealed genomic features that may enhance colonisation and association of bacteria with the coral host, such as secretion systems and eukaryote-like repeat proteins. CONCLUSIONS: Our work provides an in-depth genomic analysis of the functional potential of G. fascicularis-associated bacteria and identifies novel combinations of traits that may enhance the coral's ability to withstand coral bleaching. Identifying and characterising bacteria that are beneficial for corals is critical for the development of effective probiotics that boost coral climate resilience. Video Abstract.


Assuntos
Antozoários , Animais , Branqueamento de Corais , Genômica , Bactérias/genética , Carbono
11.
PeerJ ; 11: e15421, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283898

RESUMO

Ocean warming and marine heatwaves induced by climate change are impacting coral reefs globally, leading to coral bleaching and mortality. Yet, coral resistance and resilience to warming are not uniform across reef sites and corals can show inter- and intraspecific variability. To understand changes in coral health and to elucidate mechanisms of coral thermal tolerance, baseline data on the dynamics of coral holobiont performance under non-stressed conditions are needed. We monitored the seasonal dynamics of algal symbionts (family Symbiodiniaceae) hosted by corals from a chronically warmed and thermally variable reef compared to a thermally stable reef in southern Taiwan over 15 months. We assessed the genera and photochemical efficiency of Symbiodiniaceae in three coral species: Acropora nana, Pocillopora acuta, and Porites lutea. Both Durusdinium and Cladocopium were present in all coral species at both reef sites across all seasons, but general trends in their detection (based on qPCR cycle) varied between sites and among species. Photochemical efficiency (i.e., maximum quantum yield; Fv/Fm) was relatively similar between reef sites but differed consistently among species; no clear evidence of seasonal trends in Fv/Fm was found. Quantifying natural Symbiodiniaceae dynamics can help facilitate a more comprehensive interpretation of thermal tolerance response as well as plasticity potential of the coral holobiont.


Assuntos
Antozoários , Dinoflagelados , Animais , Antozoários/fisiologia , Recifes de Corais , Branqueamento de Corais , Mudança Climática
12.
Appl Environ Microbiol ; 89(7): e0054323, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37314342

RESUMO

Coral reefs are among the most biodiverse ecosystems, providing habitats for various organisms. Studies on coral bleaching have been increasing recently, but little is known about the distribution and community assembly of coral pathogenic bacteria (e.g., several Vibrio species). We elucidated the distribution pattern and interaction relationships of total bacteria and Vibrio spp. in sediments from the Xisha Islands, which are characterized by their high coverage and diversity of coral resources. Vibrio spp. showed significantly higher relative abundance values in the Xisha Islands (1.00 × 108 copies/g) than in other areas (approximately 1 × 104 to 9.04 × 105 copies/g), indicating that the coral bleaching event of 2020 may have promoted the bloom of vibrios. A spatial shift in community composition was observed between the northern (Photobacterium rosenbergii and Vibrio ponticus) and southern (Vibrio ishigakensis and Vibrio natriegens) sites, accompanied by a clear distance-decay pattern. The spatial distance and coral species (e.g., Acroporidae and Fungiidae) had much greater correlations with the Vibrio community than did environmental factors. However, complex mechanisms may exist in the community assembly of Vibrio spp. due to the large proportion of unexplained variation. Stochastic processes may play an important role, as shown by the neutral model. Vibrio harveyi had the highest relative abundance (77.56%) and niche breadth, compared to other species, and it was negatively correlated with Acroporidae, likely reflecting its strong competitive ability and adverse effects on specific corals. Our study provides insights into the bloom and underlying assembly mechanisms of sedimentary vibrios in the Xisha Islands, thereby contributing to identify the potential indicator of coral bleaching and provide inspiration for the environmental management of coral reef areas. IMPORTANCE Coral reefs exert important roles in maintaining the sustainability of marine ecosystems but decline worldwide due to various drivers, especially pathogenic microorganisms. Here, we investigated the distribution pattern and interactions of total bacteria and Vibrio spp. in the sediments from Xisha Islands during the coral bleaching event of 2020. Our results showed that the abundances of Vibrio (1.00 × 108 copies/g) were high across the whole sites, indicating the bloom of sedimentary Vibrio spp. Coral pathogenic Vibrio species were abundant in the sediments, likely reflecting adverse effects on several kinds of corals. The compositions of the Vibrio spp. were separated by geographical location, which was mainly attributable to the spatial distance and coral species. Overall, this work contributes by providing evidence for the outbreak of coral pathogenic vibrios. The pathogenic mechanism of the dominant species (especially V. harveyi) should be comprehensively considered by laboratory infection experiments in the future.


Assuntos
Antozoários , Vibrio , Animais , Ecossistema , Branqueamento de Corais , Ilhas , Recifes de Corais , Antozoários/microbiologia , Vibrio/genética
13.
Mar Environ Res ; 189: 106044, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37321888

RESUMO

From July to August 2022, scleractinian coral communities in China's Greater Bay Area (GBA) in the northern South China Sea (nSCS) experienced an unprecedented bleaching event, despite the fact that coral communities in this area are often considered coral thermal refugia due to their high latitude distribution. Field surveys of six sites covering three main coral distribution areas of the GBA revealed that coral bleaching occurred at all sites. Bleaching was more severe in shallow water (1-3 m) than in deep water (4-6 m), as indicated by both percent bleached cover (51.80 ± 10.04% vs. 7.09 ± 7.37%) and bleached colonies (45.86 ± 11.22% vs. 6.58 ± 6.53%). Coral genera Acropora, Favites, Montipora, Platygyra, Pocillopora, and Porites showed high susceptibility to bleaching, and Acropora and Pocillopora suffered high post-bleaching mortality. In the three areas surveyed, analysis of oceanographic data detected marine heatwaves (MHWs) during the summer, with mean intensities between 1.62 and 1.97 °C and durations between 5 and 22 days. These MHWs were primarily driven by increased shortwave radiation due to strong western Pacific Subtropical High (WPSH), combined with reduced mixing between the surface and deep upwelling waters due to reduced wind speed. Comparing with histological oceanographic data showed that the 2022 MHWs were unprecedented, and there was a significant increase in the frequency, intensity, and total days of MHWs during 1982-2022. Furthermore, the heterogeneous distribution of summer MHW characteristics indicates that the coastal upwelling may modulate the spatial distribution of summer MHWs in nSCS through its cooling effect. Overall, our study indicates that MHWs may have affected the structure of the subtropical coral communities in the nSCS, and impaired their potential as thermal refugia.


Assuntos
Antozoários , Recifes de Corais , Animais , Branqueamento de Corais , China , Água
14.
Sci Rep ; 13(1): 9338, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291208

RESUMO

Thermal-stress events on coral reefs lead to coral bleaching, mortality, and changes in species composition. The coral reefs of Yap, in the Federated States of Micronesia, however, remained largely unaffected by major thermal-stress events until 2020, when temperatures were elevated for three months. Twenty-nine study sites were examined around Yap to determine geographical and taxonomic patterns of coral abundance, bleaching susceptibility, and environmental predictors of bleaching susceptibility. Island-wide, 21% (± 14%) of the coral cover was bleached in 2020. Although inner reefs had a greater proportion of thermally-tolerant Porites corals, the prevalence of bleaching was consistently lower on inner reefs (10%) than on outer reefs (31%) for all coral taxa. Corals on both inner and outer reefs along the southwestern coast exhibited the lowest prevalence of coral bleaching and had consistently elevated chlorophyll-a concentrations. More broadly, we revealed a negative relationship between bleaching prevalence and (moderate) chlorophyll-a concentrations that may have facilitated resistance to thermal stress by reducing irradiance and providing a heterotrophic energy source to benefit some corals exposed to autotrophic stress. Southwestern reefs also supported a high but declining fish biomass, making these bleaching-resistant and productive reefs a potential climate-change refuge and a prime target for conservation.


Assuntos
Antozoários , Branqueamento de Corais , Animais , Clorofila A , Recifes de Corais , Clorofila , Micronésia
15.
Sci Total Environ ; 892: 164258, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209734

RESUMO

Coral bleaching and coral reef degradation have been severely increased due to anthropogenic impacts, especially global warming. Studies have indicated the key role of host-microbiome symbiotic relationships for the coral holobiont health and development, although not all of the mechanisms of interaction have been fully explored. Here, we explore bacterial and metabolic shifts within coral holobionts under thermal stress, and its correlation with bleaching. Our results showed obvious signs of coral bleaching after 13 days of heating treatment, and a more-complex co-occurrence network was observed in the coral-associated bacterial community of the heating group. The bacterial community and metabolites changed significantly under thermal stress, and genera Flavobacterium, Shewanella and Psychrobacter increased from <0.1 % to 43.58 %, 6.95 % and 6.35 %, respectively. Bacteria potentially associated with stress tolerance, biofilm formation and mobile elements decreased from 80.93 %, 62.15 % and 49.27 % to 56.28 %, 28.41 % and 18.76 %, respectively. The differentially expressed metabolites of corals after heating treatment, such as Cer(d18:0/17:0), 1-Methyladenosine, Trp-P-1 and Marasmal, were associated with cell cycle regulation and antioxidant properties. Our results can contribute to our current understanding on the correlations between coral-symbiotic bacteria, metabolites and the coral physiological response to thermal stress. These new insights into the metabolomics of heat-stressed coral holobionts may expand our knowledge on the mechanisms underlying bleaching.


Assuntos
Antozoários , Microbiota , Animais , Branqueamento de Corais , Recifes de Corais , Antozoários/fisiologia , Resposta ao Choque Térmico , Bactérias , Simbiose
16.
Sci Rep ; 13(1): 6397, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076539

RESUMO

Widespread coral bleaching was observed over the Great Barrier Reef, Australia, the world's largest coral reef during the 2021-2022 La Niña. This raised concerns that background global warming may have crossed a critical threshold causing thermal stress to corals during a climate state historically associated with increased cloud cover, rainfall and cooler summer water temperatures. Here we present an analysis of recent summer La Niña events focused on their synoptic meteorology and corresponding water temperatures over the Great Barrier Reef. Results show that the 2021-2022 summer La Niña caused accumulated coral heat stress to exceed previous La Niña conditions by 2.5 times. We find that weather patterns that favoured the build-up of heat in water overlying the Great Barrier Reef during the 2021-2022 summer were likely the result of repositioning of planetary scale atmospheric longwaves. This insight provides an additional means to predict potential future atmospheric conditions that increase the risk of extremely high water temperatures and coral bleaching in the Great Barrier Reef.


Assuntos
Antozoários , Branqueamento de Corais , Animais , El Niño Oscilação Sul , Recifes de Corais , Austrália , Temperatura Alta , Água
17.
Mar Environ Res ; 186: 105939, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36924536

RESUMO

Coral bleaching heat stress products provide real-time and rapid coral bleaching alerts for coral reefs globally. However, geographical variations in the alert accuracy of multi-source coral bleaching heat stress products exist. Taking the coral reefs in the South China Sea (SCS) as the study area, we evaluated and improved the coral bleaching alert capabilities of two coral bleaching heat stress products: Coral Reef Watch (CRW) and Coral Reef Temperature Anomaly Database (CoRTAD). Using in situ coral bleaching survey data and evaluation indicators, the optimized thresholds of degree heating weeks (DHWs) for coral bleaching alerts were determined. The results in the SCS indicated that, first, CRW was better than CoRTAD for coral bleaching event alerts. However, both products underestimated coral bleaching events using the common DHW thresholds of 4°C-weeks and 8°C-weeks. Second, the DHW optimized threshold for CRW was 3.32°C-weeks for coral bleaching event alerts and 4.52°C-weeks for severe coral bleaching event alerts. For CoRTAD products, the DHW optimized threshold was 2.36°C-weeks for coral bleaching event alerts and 4.14°C-weeks for severe coral bleaching event alerts. This study proposed a method to evaluate and optimize the alert capability of multi-source coral bleaching heat stress products, which can provide more accurate basic data for coral reef ecosystem health assessment and contribute to global coral reef ecosystem protection and restoration.


Assuntos
Antozoários , Recifes de Corais , Animais , Temperatura , Ecossistema , Branqueamento de Corais , Resposta ao Choque Térmico , China
18.
PLoS One ; 18(2): e0281719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36780497

RESUMO

The recurrence of mass coral bleaching and associated coral mortality in the past few decades have raised questions about the future of coral reef ecosystems. Although coral bleaching is well studied, our understanding of the spatial extent of bleaching events continues to be limited by geographical biases in data collection. To address this gap, we updated a previous observational database and spatially modelled the probability of past bleaching occurrence. First, an existing raw observational database was updated to cover the 1963-2017 period using searches of the academic and grey literature and outreach to coral reef monitoring organizations. Then, in order to provide spatially-explicit global coverage, we employed indicator kriging to spatially model the probability of bleaching occurrence each year from 1985 through 2017 at 0.05° x 0.05° lat-long resolution. The updated raw database has 37,774 observations, including 22,650 positive bleaching reports, three times that in the previous version. The spatial interpolation suggests that 71% of the world's coral reefs likely (>66% probability) experienced bleaching at least once during the 1985 and 2017 period. The mean probability of bleaching across all reefs globally was 29-45% in the most severe bleaching years of 1998, 2005, 2010 and 2016. Modelled bleaching probabilities were positively related with annual maximum Degree Heating Weeks (DHW), a measure of thermal stress, across all years (p<0.001), and in each global bleaching event (p<0.01). In addition, the annual maximum DHW of reef cells that very likely (>90% probability) experienced bleaching increased over time at three times the rate of all reef cells, suggesting a possible increase in reef thermal tolerance. The raw and spatially interpolated databases can be used by other researchers to enhance real-time predictions, calibrate models for future projections, and assess the change in coral reef response to thermal stress over time.


Assuntos
Antozoários , Ecossistema , Animais , Branqueamento de Corais , Recifes de Corais , Antozoários/fisiologia , Bases de Dados Factuais
19.
Sci Total Environ ; 871: 162113, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773903

RESUMO

Anomalously high ocean temperatures have increased in frequency, intensity, and duration over the last several decades because of greenhouse gas emissions that cause global warming and marine heatwaves. Reef-building corals are sensitive to such temperature anomalies that commonly lead to coral bleaching, mortality, and changes in community structure. Yet, despite these overarching effects, there are geographical differences in thermal regimes, evolutionary histories, and past disturbances that may lead to different bleaching responses of corals within and among oceans. Here we examined the overall bleaching responses of corals in the Atlantic, Indian, and Pacific Oceans, using both a spatially explicit Bayesian mixed-effects model and a deep-learning neural-network model. We used a 40-year global dataset encompassing 23,288 coral-reef surveys at 11,058 sites in 88 countries, from 1980 to 2020. Focusing on ocean-wide differences we assessed the relationships between the percentage of bleached corals and different temperature-related metrics alongside a suite of environmental variables. We found that while high sea-surface temperatures were consistently, and strongly, related to coral bleaching within all oceans, there were clear geographical differences in the relationships between coral bleaching and most environmental variables. For instance, there was an increase in coral bleaching with depth in the Atlantic Ocean whereas the opposite was observed in the Indian Ocean, and no clear trend could be seen in the Pacific Ocean. The standard deviation of thermal-stress anomalies was negatively related to coral bleaching in the Atlantic and Pacific Oceans, but not in the Indian Ocean. Globally, coral bleaching has progressively occurred at higher temperatures over the last four decades within the Atlantic, Indian, and Pacific Oceans, although, again, there were differences among the three oceans. Together, such patterns highlight that historical circumstances and geographical differences in oceanographic conditions play a central role in contemporary coral-bleaching responses.


Assuntos
Antozoários , Branqueamento de Corais , Animais , Teorema de Bayes , Recifes de Corais , Antozoários/fisiologia , Oceano Índico , Ecossistema
20.
mSystems ; 8(1): e0092122, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688656

RESUMO

Beneficial microorganisms for corals (BMCs) have been demonstrated to be effective probiotics to alleviate bleaching and mitigate coral mortality in vivo. The selection of putative BMCs is traditionally performed manually, using an array of biochemical and molecular tests for putative BMC traits. We present a comprehensive genetic survey of BMC traits using a genome-based framework for the identification of alternative mechanisms that can be used for future in silico selection of BMC strains. We identify exclusive BMC traits associated with specific strains and propose new BMC mechanisms, such as the synthesis of glycine betaine and ectoines. Our roadmap facilitates the selection of BMC strains while increasing the array of genetic targets that can be included in the selection of putative BMC strains to be tested as coral probiotics. IMPORTANCE Probiotics are currently the main hope as a potential medicine for corals, organisms that are considered the marine "canaries of the coal mine" and that are threatened with extinction. Our experiments have proved the concept that probiotics mitigate coral bleaching and can also prevent coral mortality. Here, we present a comprehensive genetic survey of probiotic traits using a genome-based framework. The main outcomes are a roadmap that facilitates the selection of coral probiotic strains while increasing the array of mechanisms that can be included in the selection of coral probiotics.


Assuntos
Antozoários , Probióticos , Animais , Antozoários/genética , Bactérias/genética , Probióticos/farmacologia , Branqueamento de Corais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...